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SUMMARY

A rigorous theory of the s-wave elastic scattering of elec-

trons from hydrogen is presented. The Schr_dinger equation is

reduced to an infinite set of coupled two-dimensional partial dif-

ferential equations. A zeroth order scattering problem is defined

by neglecting the coupling terms of the first equation. An exact

relation is derived between the phase shift of this zeroth order

problem and the true phase shift. The difference between these

is given by a rapidly convergent series whose terms correspond

adiabatically to multipole distortions of the hydrogen by the in-

coming electron. Recognition of the physical significance of the

zeroth order problem is considered basic to the understanding of

the scattering problem. The exchange approximation for s-wave

scattering is shown to be a variational approximation of the

zeroth order problem. A perturbation theory is introduced to

calculate the higher order corrections. The dipole correction has

an increasingly important quantitative effect in the limit of zero

energy. The effect of the long range part of this correction on

the scattering length can be expressed by a formula in terms of

inverse powers of a long range parameter R. Phase shifts are

calculated for both singlet and triplet scattering, including up to

quadrupole terms. The convergence is such that this number of

terms should yield better than four place accuracy. Uncertainties

in the calculated values decrease the accuracy to approximately

three significant figures.
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LIST OF SYMBOLS

E Total energy. E = -1 + k2. The term -1 is the energy of H atom and k 2 is the

energy of the impinging electron.

PI (cos _12) Legendre polynomials of order z of cos 812.

r l
The distance of electron 1 from the nucleus.

r 2
The distance of electron 2 from the nucleus.

Rn,(r_) The s-eigenstates of hydrogen. In particular R,,(r2) = 2r2e -r2 is the ground

state.

Exact s-wave phase shift.

_0 Phase shift of the zeroth order problem. That is,

lira ¢o (°) (rz,r2) = sin(kr 1 + 8o) Rzs(r2)
r -. aa

1

(j) m 1

A' 8o The various order corrections to _o" That is, 8 = 8o+ _ _ Alao{i).

l=1 j=l

812 The angle between the lines connecting electrons 1 and 2 to the nucleus.

¢/(rzr2) Functions in the basic expansion of

¢o(r_,r2)

c_
1 z

• (r;,r=,e,=) - rzr2 77,(=' + ')_ e,(rz,r,) Pz(oOSe,2) •
l=0

Only non-vanishing of the e l's in the limit r, - co. That is,

lira gC(r z,r 2,012) = lira eo(rz,r2)
rl _ co rl _ oD

= sin (kr I + a) Rl,(r2)

Co<O)(r _, r 2) Exact solution of the simplified s-wave problem (zeroth order problem).

( rzr2812 ) Solution of the s-wave scattering problem.
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NONADIABATICTHEORY OF
ELECTRON-HYDROGENSCATTERING**

by

A. Temkin

Goddard Space Flight Center

INTRODUCTION

The elastic scattering of electrons from atomic hydrogen is the most fundamental

three-body scattering problem of quantum mechanics. Nevertheless, the process of

theoretical understanding has been slow and is still not complete.

Specifically, the lack of a real quantitative understanding of this problem--as com-

pared with its counterpart, the ground state of helium problem--can be traced to two

causes. The first was the lack of a minimum principle which guarantees not only that a

certain quantity is variational in character, but, more important, that it is greater than

(or less than) the exact quantity to be evaluated. The lack of a minimum principle has

recently been overcome by Rosenberg, Spruch, and O'Malley, who have derived minimum

principles for the scattering length (Reference 1) and who are attempting to generalize the

procedure to include phase shifts as well (Reference 2).

The second aspect of scattering problems which has slowed the process of quantita-

tive understanding is simply the fact that the scattering parameters are more sensitive

functions of the wave function than, say, the ground state energy. This sensitivity may be

illustrated in the case of the singlet scattering of electrons by hydrogen, where there is

known to be a singlet bound state of the H" ion with a binding energy of 14.460 electron

volts (ev). The electron affinity e is defined as the difference between this energy and that

of a hydrogen atom and a free electron. Clearly e is the quantity of physical significance,

for only when it is negative is the H- bound. Being a small difference between two large

numbers, _ is obviously sensitive to deviations in one of the large numbers. An approxi-

mation which undershoots the total energy by 6 percent predicts no binding. The fact that

the H- wave function corresponds to a barely bound system means that it must be related

to the low energy (e-H) scattering wave function. This relationship is expressed by the

*A sketch of this method has been published under the title "Nonadiabatic Theory of the Scattering of Electrons

from Hydrogen" in Phys. Rev. Letters 4(11):566-588, June 1, I960.

tPublished in full and under the same title in Phys. Rey. 126(1):130-142, April l, 1962.



approximate formula (Reference 3)

y!l/'' _- 1 i-+ I_1 '_-F 0

which shows that the effective range parameters a and r 0 are also sensitive functions of

the wave function)

The sensitivity of the scattering parameters (the phase shifts) to the wave function

manifests itself in another way. Suppose, in considering a scattering problem, that an

attempt is made to replace the interaction of the incident particle with the (many-body)

target by an equivalent one-body potential. In the bound state problem, it is known that

the Hartree or Hartree-Fock method leads to just such an equivalent potential. In the

case of scattering of a particle from a compound system consisting of particles different

from the incoming particle, Mittleman and Watson (Reference 6) have developed formal

expressions for just such a potential, and Mittleman (Reference 7) has modified the ap-

proach to apply to the scattering of electrons from hydrogen. However, the equivalent

potential is effectively a series expansion in which the derivation of successive terms is

a major calculational task, particularly for the in-close behavior of the potential, and in

which the physical meaning of successive terms becomes increasingly obscure. In addi-

tion, the potentials become quite nonlocal in character and appear to present considerable

difficulties for numerical solution (M. Mittleman, private communication).

The difficulty of evaluating a potential that is valid over all space is symptomatic of

the essentially non-two-body character of the scattering problem. The main idea of the

method that we shall present here is that the correct zeroth order problem is a three-

body problem. However, given the basic three-body problem, there are a variety of ways

of handling it. Thereafter, the corrections are separable in the first approximation. The

method we shall present is an extension of the method of Luke, Meyerott, and Clendenin

(Reference 8)? The chief formula is Equation 13, which relates the zeroth-order phase

shift $0 with the exact phase shift _. The main property of the terms on the right-hand

side of Equation 13 is that they constitute a rapidly convergent series. They also have a

natural physical interpretation as long-range polarization effects. The quantitative

importance of the lower of these terms is basically an expression of the increased impor-

tance of polarization in (most) scattering problems as opposed to (most) ground state

energy problems. The polarization terms constitute the part of the wave function from

which the extra sensitivity of the scattering parameters stems. Yet the main contribution

of these functions comes from the (adiabatic) region where the functions are separable.

The nonadiabatic method, however, projects equations for these functions over all space;

1The effective range formalism for the (e-H) problem has been effectively exploited by Ohmura, Hara, and

Yamaouchi (Reference 4) and by Ohmura and Ohmura (Reference 5).

2The author is indebted to Mr. John W. Cooper for having brought this paper to his attention.
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various devices can be employed to get reasonable estimates of the contributions of these

functions from the nonadiabatic region even without solving the associated partial differen-

tial equations. This will be the subject of the succeeding sections. We shall conclude with

the evaluation of fairly accurate electron-hydrogen phase shifts, and, more important,

with a reliable estimate of the error.

DECOMPOSITIONOFTHES-WAVEEQUATION

The s-wave scattering of electrons from hydrogen is described by the SchrSdinger

equation of zero total angular momentum for two electrons in the field of a singly charged

nucleus (assumed infinitely heavy). Such an equation can be reduced to a three-dimensional

partial differential equation which can be written (Reference 9)

+ 301 sin 91 _ _-0_
rl _r12 r23r _ sin _2 2 2

(1)

-I
2 2 2 |

+---Ej,_,:_1,_,012__: = o .r 1 r 2 r12

where energy units are rydbergs (1 ryd = 13.6 ev) and length units are Bohr radii. The

fact that the s-wave equation can be reduced to a single three-dimensional equation is the

main mathematical reason that it is susceptible to a highly quantitative treatment.

Because the Legendre polynomials Pj (cos 8) are eigenfunctions of the angular dependent

operator in the above equation, that is,

e, (co, 81_) (2)_ 1 3 sin 812 _,---_--'- Pl (cos 812_goal2 _' / : --_(1 -I-1)
sin 812 _812

1

the wave function can be expanded into

co

1 z_ ¢_ + ' *' (_"_) h (_o_8,_) . (3)_(rl,r2,812) - rlr2

l=0

Substitution into Equation 1 then gives an infinite set of coupled equations

_ 2 2 ] (,l(l +1)(rl-2 + r2 2) + E +-- +--- Mr/ *, lr )
r 1 r 2

: _ 'MI mqbm (r lr2)

rn

(4)
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where in the region r I > r 2 ,

l+m r_- l _
)-_-- oMlm = 1/(2l + I}{2m + 1} rln+1 ]0 Pl(cos_)P (cosO) P {cos_} sin_dG .

n=O

(5)

Under exchange (rj _- r2) the three coordinates of the s-wave problem transform

according to r_ a r2 and 012 _ + e12. Thus, the singletand {riplet _, functions must have

the property _(r_,r2,e_2 ) = ±_(r2,rl,e12 ) respectively. In terms of the expansion

function % this implies (as a necessary and sufficient condition) that

el(fir2) = ±¢l (r2rx).

The symmetry of the bracketed operator in Equation 1 further implies that the problem can

be solved completely in the region r _ >_.r 2 by imposing the additional boundary conditions

0 triplet I ,

= 0 singlet J

(6)

where _/_n means the normal derivative. Because of the rlr 2 factor in Equation 3, we

have in both cases

,I_(r_0) = 0 . (7)

We are restricting ourselves to the description of scattering below the threshhold

for inelastic scattering; thus, we must also have

lim _o(rlr2) : sin (kr I + 8) Rls(r2)

rl_m

tim¢,(r1_=) : 0, l >o.
rl-Co

(8)

Here k is the momentum of the scattered electron and is related to the energy by

E = -1 +k s
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and R1, (r) is r times the (normalized) ground state radial function of the hydrogen.

The s-wave phase shifts _ are then completely specified by the coupled set of

Equations 4 subject to the boundary conditions of Equations 6 through 8.

Clearly such a set of equations must be solved in some approximate manner. What

we would like to give in the sequel is a basis for such a method of successive approxima-

tions. The virtue of the method of approximation is that there is obvious physical signi-

cance in each stage and that both physical and mathematical reasons for the rapid conver-

gence of the series can be readily established. A central role in this scheme is the zeroth

order approximation, which we shall now consider.

THE ZEROTHORDERAPPROXIMATION

AND THE MULTIPOLEEXPANSION

Since

2 r_
?']o m = -- w :P

m+l (9)2_f_m + I r 1

the equation for ¢o (r:, r2) can be written explicitly as

-- m+ | (IDm (10)

rn=l

It is natural to attempt to approximate this equation by neglecting the right-hand side.

Consider

subject to the boundary conditions of Equations 6 and 7 for %(0) and with the asymptotic

form

lira q)(o)(rlr2) = sin (kr, + So) R,,(r2) . (12)
rl_co

It is important to realize that, although the right-hand side of Equation 12 is an exact

solution of Equation 11, $0 is not arbitrary.
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and integrating over the half plane r 2

In the language of partial differential

equations, Equation i1 is an elliptic equa-

tion with Dirchlet boundary conditions along

all sides for the triplet case and with

Neumann conditions along s 3 in the singlet

case (Figure 1). The boundary condition

along s 2 is

:

where C is an arbitrary constant corre-

sponding to the arbitrariness in normaliza-

tion of %(o) For a given C, _o is clearly

independent of C. The uniqueness of the

solution for a given C then guarantees that

0 is unique.

A relation between 8 o and S can be

established by multiplying Equation 11 by

¢o and Equation 10 by %(0). subtracting

rl; this gives

o)&12,_o ) drldr2 = _rl(¢o& 12dp°(°) _ ¢0 ( ¢0 (
vO vO

m=l

The operator

_2 _2
A -_ +--

12 )rl 2 _r 2

is the two-dimensional Laplacian, and using Green's theorem, we can write the left-hand

side of Equation 12 as

f0c°f_ . (_0A12dp0(0) - _0(O)Al2qb°)drldr2 : fs I¢0_-n _Po (0) - _0 (0) _ _Po) dS *

The boundary s goes around the region r I > r 2 and is thus the triangle indicated in Figure 1.

The line integral along s t is zero by virtue of Equation 7 and its counterpart for ¢o<°) .

The integral along s 3 is zero by Equation 6 so that we are left with only the integral
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alongs2. Here 3/_n= 3/_rl, and using the asymptotic forms of ¢0 and ¢o(°), Equations

7 and 12, and the assumption that R, s is normalized, we arrive at our main formula

1_ _=dr fo I ¢o(° )r2m (13)si. - -" ° , r.+ , *o
m=l

Equation 11 is the zeroth order problem and _o the zeroth order phase shift. It must

be emphasized that in spite of the separability of Equation 11 as a partial differential

equation, the problem is nonseparable by virtue of the nonseparable boundary condition

for ¢o<°) (see equation 18 below). The physical meaning of the equation is clear.

Electron 1 comes in seeing no charge at all while the orbital electron (electron 2) sees

the whole nuclear charge. When electron 1 gets inside the orbit of electron 2, it sees

the whole nuclear charge and becomes the orbital electron while electron 2 goes off as

the scattered particle seeing no charge. This, of course, is nothing but the shielding

approximation as it applies to a scattering problem. Yet, because the position of elec-

tron 1 is correlated with the position of electron 2, which itself is variable, this is dis-

tinctly a three-body problem. It is the thesis of this report that this rudimentary

three-body problem lies at the core of this, the s-wave elastic scattering problem, and

that attempts at further reduction either are equivalent to mathematical reformulations

of the problem or they bring in dubious approximations.

It is not difficult to show that the exchange approximation (Reference 10), which uses

an ansatz _EA not depending on the angle e, 2, that is,

rlr2q_EA = u(rl)'R1s(r2) -+ u(r2) R ls(rl)

for the s-wave function, is in fact a variational solution of only that part of the original

Schrbdinger equation corresponding to Equation 11. For if we consider the matrix element

2 2 2
of the complete interaction, + -- + with any (symmetric or antisymmetric)

r 1 r 2 r12'

function of the form f (rl,r2) then 3

fff, (rl,r2)(___1 ÷ r22 rt_2 _

co

f r,,r  d3r, 3r JOI 22
rlr2f/rl,r2) -_<dr ldr 2

rl rlr2 f rl,r 2 r 2' 2:2 dr2= 2 dr I

3Geltman (Reference 11) has computed variational phase shifts, using wave functions, which for s-waves are functions of r 1

and r 2 only. According to our analysis, his phase shifts are approximations of the zeroth order 80 only. McEachran and

Fraser (Reference 12) and Smith (Reference 13) have used the close-coupling extension of the exchange approximation in-

cluding various numbers of excited s-states in their wave functions. These too can only approximate _0 "



where we have used the (anti) symmetry of f (r,, r 2). (Note that other terms of the

SchrOdinger equation will also yield matrix elements in this region multiplied by a factor

of 2.) We shall see in the next section that the exchange approximation yields phase shifts

practically identical4 to 80. Therefore, it is an excellent approximation of _o(°), yet

from Equation 13 we see that it neglects the higher order corrections associated with the

function ¢i"

One more remark is in order concerning the zeroth order problem and 8o in particular:

there are no long-range polarization forces associated with the zeroth order problem, so

that the boundary conditions associated with %(0), aside from its s-wave sinusoidal be-

havior at infinity, are very much like a bound-state problem. This is quite different from

the phase shift of the whole problem in which there are long-range polarization forces,

which are, however, manifested in et (l > 0). A practical consequence of this is that 8o

considered as a function of r x quickly assumes its asymptotic form as is typical for a

particle scattered from a short-range potential. In fact, the Hartree-Fock exchange

approximation potential is an exponentially decaying one. Thus, in contrast to 8, which only

slowly assumes its asymptotic form, 8o can truly be regarded as unvarying for large r r

(This consideration is relevant in the derivation of Equation 52.)

The physical meaning of the functions ¢; can be gleaned from the adiabatic region

(defined as the region r, >> r_ and r, > > 1). In this region, only the function ¢o fails to

vanish and only the first term (-2r1-1) of Ml! in Equation 4 need be considered. Thus,

these equations reduce to

_ 2rJ sin (kr I + 8)a_ a_ ;el+,) 2 _1+k,j_t - _ +, _,,(r_)._ + 2 + r---_
_r12 _r_ r 2 rll

(14)

A solution of this equation, neglecting the operation _a/_r5 on r,-(I+ ,)(which we assume is

justifiedin this region), is

-2 (k,, + _ [ (15)
r2\l + 1 + I} "et ¢_ +1 r[;; e

These functions represent multipole distortions of the hydrogen atom caused by an

electron at some distance from the atom (Reference 14 and 15).

4AIth°ug h _gA is gotten from a separable picture of the interaction, the requirement that it have the correct symmetry
makes it, in fact, nonseparable. The combination of the symmetry and nonseparability, the fact that the zeroth order

problem contains no long-range polarization which is also true of _z^, and the variational nature of the equations for

u(r) all combine to make _ A an excellent approximation of @J0). Reference 14 stresses the fact that correct treatment

of the symmetry goes a long way toward including the nonseparability (nonadiabaticity). This is the fortunate circum-
stance which has allowed investigators to calculate not unreasonable estimates of the low energy scattering of electrons

from atoms, starting the significant work of Morse and Allis (Reference 10).



Having obtained the adiabatic form of

• _, we can now qualitatively establish the

convergence of Equation 13. The configu-

ration space of each double integral can be

divided into roughly four regions, sche-

matically indicated in Figure 2. In region

D, the adiabatic region, the explicit forms

of ¢o<°> and _Pl can be used to see that the

contributions from that region go down

rapidly as a function of /. In region C

where r 2 ._ r 1 and both arelarge, the con-

tribution is very small in all cases. This

is because ¢_o( o ) and the ¢__ decay exponen-

tiallythere, roughlyasexpf-(rl+%) _}/_-E ].
1

(Note that E < -i for all the energies being

considered.) In region A where both rl

and r2are small, the _bl'S(l > O) are nec-

C.l::
0 0

,-n,_

U U

_z

_ O

Distance of Electron 1

from the Nucleus, r 1 (Bohr radii)

Figure 2 -- The regions of configuration space
which give different magnitude contributions to
the multiple integrals.

essarily small by virtue of the centrifugal barrier -t(; + 1) (r 1-2 + r 2-2) .which pushes the

wave functions out from that region s For intermediate values of r_ and r 2 (region B)

there will be an important quantitative contribution whose convergence as a function of t

stems from the gradual disappearance of the region B itself as region A merges into

regions C and D.

As a function of increasing energy, the multipole terms on the right-hand side of

Equation 13 have a decreasingly important effect on the cross section. Nevertheless the

quantitative contribution of these terms becomes more difficult to calculate. This is

because at the lowest energies the proportionate contribution from region D is sizeable,

yet the function is known there. For higher energies the proportionate contribution from

region D becomes quite small.

SOLUTION OFTHE ZEROTH ORDERPROBLEM

It has already been emphasized that Equation 11, together with the boundary conditions

%¢0>(,,0) : 0 , (16)

rl_°°lim¢po(O)(r,r2 ) = sin (kr, + 8o) 1t1.(r2) ' (17)

5The presence of the centrifugal terms for g > 0 is the main reason why the associated q)g can be considered separable in

zeroth order, whereas ¢0(°)cannot.
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and

_p0(°) (rlr2)[r 1 = r2 = 0 triplet

ft = = 0 singlet

(18)

presents a highly nonseparable problem. Nevertheless, Equation 11 itself is separable,

and the separable solutions can readily be written down. We shall expand the exact solu-

tion %(°) in terms of the totality of all such separable solutions which can possibly enter

the expansion:

(19)

The sum plus integral means, as usual, that the continuum s states of hydrogen in addi-

tion to the discrete states must be included. For the discrete states

K = 1/1 - n-2 _ k 2
(20)

and for the continuum states

Kp = )I1 ._ p2 _ k 2 •
(21)

Since each term of Equation 18 is separately a solution of Equation 11, the only thing

which prevents any expansion from being an exact solution is its deviation from the bound-

ary condition, Equation 18. (Note that Equations 16 and 17 are automatically satisfied.)

We therefore determine s o and the C's by the variational condition

@o(0) (r I : r2) 2dr 1 =

2
_o (°) r 1 = r a dr I =

0 triplet,

0 singlet.

(22)



Substituting Equation 19 into the triplet integral in Equation 22 gives

11

_0 _
i, -- I_0_°>(r, --r2)l2d_,

where

_i,_(kr + _o)RL(r)d, +2 C.Y.,,+ C? IMP),, + 2 EE
i>j=l

j =I j =1

C C (ME)
i j ii

(23)

-(_i+.j)r
e - R i ,(r) Rj s(r) dr

(24)

and

_0 _ -K.Yi = sin (kr + 8o)e lrRls(r)Ri,{r) dr =- cos S_lsi + sin $_l¢i
(25)

The variation implicit in Equation 22 now becomes

_I T

78 ° - 0 •

i : 1,2,3 .... N.,

(26)

The first N equations are

N

+E ci(ME)ji --- 0 j =Y)

j=l

1,2,3 ..... N.

These may be solved for the C i to give

-1
C i =

det ' (27)
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where det is the determinant of the matrix elements:

(ME)If (M_)l 2 , • . (ME)lN\

det -_ det , (ME)22 .t
D,( i ) and De( i ) are determinants obtained by replacing the i t h column of the above ma-

trix by the columns (_ ,._,, ..... _ °) and (E c,,_, ..... _cn)' respectively.

The variation with respect to 80 gives

D8 ° - sin kr + 80 R12 " dr + 2 C i cos(kr ÷ 80) Rt dr : 0 . (29)

i=l

Using Equation 27 for the Ci's , and noting that

N N

_-'_ Ds(i)_ci : _-_ Dc(i)_si )

i=l izl

(30)

we can rewrite Equation 29 in the form

0

N

' c-c°s (28o) N2' + sin(28o) N2c - _ sinSo c°sS0 Dc(1)_ i D( i

i=l

where

N

i=l

N2_ = sin(2krlRi2 " dr ,

N2c = cos(2kr)R12 " dr .

(31)



We may readily solve for tan 28o since

13

tan 250

N
2

i=l

N

i'l

A completely analogous procedure may be used to solve for tan 250

case. We obtain

tan 25 = -o

N

1 2 _ viD_i )-2-A - kB -_
i=l

N

:Ac + kB +_ ",'S" - _,':'))
i=l

and

Dp(i)eos 5 o + Dr(l) sin_0

Cl = dets

where

rdets = determinant qJie]jdr ,

in which

in the singlet

(32)

(33)

(34)

(35)

Let

( _ _ \ -Kit ] (36)

(37)

then ai and v i are quantities independent of 5 o defined by

-fO qJ°U/idr _ /_i cos 5 o + v i sin5 °
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Also,

A s --- 8 2r+(, k2)r ]o-2rdr

B --- 8 sln(2kr)r(1 - r)e-2_dr ,

Bc _ 8 cos(2kr)r(1 - r)e-2_dr

The determinants DJ i ) and D_ _) are obtained by replacing the i th column of dets by the

column vectors (P,, P2 ..... _n) and ("1, v2 ..... "N)' respectively.

It is worth pointing out the converse nature of this technique of solution as distin-

guished from those usually employed. In most cases the exact solution is approximated

in terms of functions which are not solutions of the equation, but which do satisfy all the

boundary conditions. In close-coupling, for example, the basis functions are solutions of

part but not all of the equations. The method presented here uses functions which are

complete solutions of the equation, but which do not satisfyall the boundary conditions.

in the present method, the smallness ofthe deviation from the boundary condition isa very

reliable index of the quality of the solution (provided that this difference is small enough).

The method of performing actual calculations is then as follows: A selection of N

discrete and/or continuum terms is made (we are necessarily limited to a discrete

Sampling of the continuum states), and all the matrix elements and integrals in Equations

32 and 33 are evaluated. (Integrals involving discrete states are trivial. Pertinent for-

mulas for continuum states are included in Appendix A.) This, then, can be used to eval-

uate tan 250 from Equations 32 and 33. Then 250 modulo _ is determined from tan 230.

The correct quadrant of 2S 0 is determined by noting which value actually minimizes I T

(or I). This determines 5o modulo _. (At this point it is known for (e-H) scattering that

_o _ _ from below as k _ 0, so that in fact no ambiguity remains.) _

Numerical calculations were coded for the IBM 7090 computer at the Goddard Space

Flight Center. The program allowed an arbitrary number of terms (limited only by the

capacity of the machine) to be included. In practice, however, the number of terms was

6This example is discussed in connection with an absolute definition of phase shift in Reference 16. The same definition

has also been adopted by Rosenburg and Spruch (Reference 2).
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restricted to less than 10 by an initially unexpected circumstance: As the number of

terms was increased, det, dets, and the related determinants approached zero so rapidly

that all the significant figures contained in the evaluation of the matrix elements were

quickly lost. Therefore, the number of terms had to be restricted so that at least some

significant figures remained. Actually, not too many significant figures need be known

because any set of C i's and 80 can be considered an approximate expansion of ¢o_°_ and

its quality can be measured by the smallness of I T or I s .

A sample of the pertinent results for the triplet and singlet calculations have been

collected in Tables 1 and 2. The last column contains the exchange approximate results

which, as was proved earlier, are a variational approximate solution of the zeroth order

problem. It is clear that the approximation is in excellent agreement with the exact re-

sult (see footnote 3 page 7). It can be seen from Tables 1 and 2 that the triplet phase

shifts are leass variable and therefore can be more accurately determined than the singlet

phase shifts. This disparity is indicative of the greater accuracy that is obtainable for the

triplet results in all parts of the calculation. Note that I T and I s are positive definite.

These quantities were calculated from Equation 23 and its singlet counterpart, by using

numbers evaluated by the machine from the analytic formulas for (MF.)ij, etc. The fact

that some of the entries are negative is due to the cancellation of all significant figures.

Thus, in those cases, a zero deviation from the boundary condition to within the accuracy

of the machine has been obtained. (The accuracy of the machine is estimated to be from

five to seven places.) Because of the loss of significant figures, the smallness of I T and

I s in Tables 1 and 2 cannot be taken as an unambiguous measure of the reliability of So

for the various expansions of ,I,o(°). Nevertheless, somewhat better accuracy in _o can be

obtained than can currently be achieved for the higher order corrections.

EVALUATIONOF THE MULTIPOLE CORRECTIONS

Although the right-hand side of Equation 13 converges rapidly, there still remains

an assumption which must be true if the effectiveness of this method is not to be an

illusion: The coupling of the lower to the higher V_ in Equation 4 must not be such that

omitting the higher in the equation for the lower _ substantially changes the latter's

contribution to sin (_ - _0). Actually, our assertion concerning the importance of the

adiabatic contribution guarantees this situation for small k. For in the adiabatic region,

only _o does not vanish, and this coupling is taken into account in Equations 14 and 15.

So, if this region gives the major contribution to the integrals on the right-hand side of

Equation 13, then we can be sure that the neglect of the higher order couplings cannot

materially change the value of the integrals.

We shall introduce a perturbation theory which is based on this assumption. The

perturbation theory does not do away with the partial differential equations. (In fact, the

essence of this method is that partial differential equations are the most natural way to
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include nonadiabaticity in both ¢0(°) and the higher ¢t.) Rather, it allows the equations to

be solved in a sequential manner. It also allows the construction of "sum rules" which,

to a more limited accuracy, allow for evaluation of the multipole terms without the need

to solve the associated partial differential equations 7 beyond what is done in Equation 15.

A measure of the adiabaticity of a region of configuration space is the quantity

,+t We shall assign to this quantity an order of magnitude _,/2 in accord withr;/r 1 •
the fact that the larger n is, the smaller this quantity is in a given region of configuration

space. The functions *t are expanded according to

*l : E _+i++ ¢/i)

j=O

This embodies the notion that the higher _l's get successively smaller in the adiabatic

region and their behavior away from the adiabatic region can be expanded in a series about

their behavior in the adiabatic region) Using these expansions and the order of magnitude

associated with adiabatic factor r2%/rl "+1 we can reduce Equation 4 to a set ofI

equations characterized by increasing powers of _-. To order _-we obtain:

_o: (A++2r-++E)®o_O> = 0 , (38)

I

[ -1 + +]+/o+= 2(3>+++r:++oC°) (+9>_+:' +,+-2(+; + + ++-+) 3233

_I

;_: (At2 + 2r2 -I + E) *o Ct+ = 2(3) 2r2rt-2+iC°) , (40)

_1

[A - -1 + El 32(°) = 2(5) 2r22rl-3 o) (41)12 - 6(rl 2 + r2 2) + 2r 2 _0 C j

[_ ] 4 = (42)- 2(r; 2 + - ) + 2r -t + E ePIC1) -_-r22r13(1)1(°): 12 r2 2 2

1_ 1

r-2 ¢2(o) •1) ÷ 4(15)-Yr22(3) a r2rt -2q%(

?In conjunction with Sullivan and Cahill of NASA, we have been able to solve the second order partial differential equations

numerically. This will be the basis of very precise calculations.

$This expansion would not be very good in the region r I _" r 2 if we were interested in the values of dPr A re-expression of

our basic idea, however, would be to say that we need not know the wave function equally well in all space. Rather, we

must know (Do(0) in all space, in accord with that function's essentially three-body nature. For l > 0, q_l may be known

less well because only integrals over aPl contribute to the phase shift; and in those integrals the contribution of the region

r I _ r 2 has only limited importance [or the electron-hydrogen problem.
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The multipole series (Equation 13) becomes an expansion in integral powers of _:

Z r2 ldr2_i. (I._-_o.= - _ %<°>--
. r 1 +1

y=l m.l-p,=y

ra->l ,_->0

(43)

where _ is the expected order of magnitude of the correction to _0" The first order

correction is

_01 r 2
1 2 o) 0) drldr 2A_o =---_ _ _o< -- _¢

r 12

This is the dipole contribution with the exact _, replaced by ¢(o). The second order

contribution consists of two terms /_2_0¢1) + 52_0(2) ' where

(44)

52_o(:> _ -2 ¢o _1_o<O) _ _,_O)drldr2 , (45)

f_f_1 I)drzdr2 .
r 2 (46)

kl_ r I

Of course, /_0 _2) is the perturbation theoretic approximation of the quadrupole term,

but _2_o_1) is a dipole term. It represents the first order correction on ¢_ due to the

coupling to ¢0 in the nonadiabatic region. The fact that this term enters in the order k2

means that this contribution is expected to an order of magnitude less than A_0" It will

be seen that the calculated results are excellently consistent with this assumption.

The calculation itself was carried out to order _3. This requires, in principle, the

solution of Equations 38 through 42. Actually, the fact that the asymptotic form of the

functions is known allows us to achieve reasonably accurate phase shifts without further

solving these equations. The adiabatic forms of the functions %(°) are:

-2r_ -(_+ 1) r2__)
q_l(o) _ sin (kr + $o)e -r2:r21_2

, \l+1 + "

The asymptotic form of cPI(1) in the adiabatic region is

(47)

2 c°s(krl + 8°) -r2 (_ ) (48)gPl(1) _ -- _ (_0) r 12 e + r_ •
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If a large portion of the various integrals comes from the adiabatic region, it is clear that

Equations 47 and 48 alone will give a not unreasonable estimate of their size. More about

these functions is known, namely their boundary conditions along r, -- r 2. In the triplet

case the function vanishes, and a factor which will do this for Ct (°) can easily be

appended. We have used

The positive constant D_ can be fairly unambiguously determined as will be shown below.

In the singlet case there is no simple factor which will make the normal derivative of

¢l (°) zero along r 1 = r 2. We have used

-2 sin (krl + _0) /rt+2 1+I\

the cutoff factor having been inserted in such a way as to give el (°) the expected behavior

¢t(0) _ r,t+'inthe limit r2 _ r, 40.

The determination of D I was accomplished in the following way. By essentially the

same method as that used to derive Equation 13, "sum rules" of the form

¢o (°) l(l +1) + _ ¢l(°)drldrz -
\r I _ r[ +I ¢o<°) drI dr2

(51)

can be derived from Equation 38 and the equations like Equations 39 and 41.

The functions ¢o_°) are known from the zeroth order calculation; thus the right-hand

sides of Equation 51 could be evaluated. The forms of Equations 49 and 50 were used in

conjunction with ¢0{°> to evaluate the left-hand side as a function of Dz . The adopted

values of Dr were those which gave equality. (Some of the results are shown in Figures

3 and 4.) These values of D1 were then used to evaluate the terms on the right-hand

side of Equation 43, in particular _ 0, A2_o _2}, and A_o{1}.

The types of cutoffs we have used do not introduce any bending of nodal lines in the

r 1 > r 2 triangle. Such behavior is reasonable for the lowest energies. At high energies

the bending would be expected to become significant; thus, the errors intrinsic to the

calculation will probably go up.
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In calculating A2_o(_) we have used the same type of cutoffsfor _t_t) as for ¢i(0).

Itis possible to derive "sum rules" which tend to indicate that the value of D to be used

should be somewhere between the dipole value D, and the quadrupole D2. Nevertheless,

the contribution of this function from the nonadiabatic region is expected to be greater

than its contribution from the adiabatic region. In addition, judging from Equation 42, we

expect its behavior in the nonadiabatic region to be much more complicated there. Thus,

our evaluation of A2_0(_) should be considered somewhere between a calculation and

an estimate.

In practice, all double integrals were done numerically. Thus, it was necessary to

stop the integration over r, at a finite point r x = R. It is important, however, to take

into account the contribution of the integral for r, > R in the limit of zero energy. For-

tunately, this can be done analytically. The analysis for the effect of this long-range

behavior on the scattering length has already been given. 9 A somewhat more careful

derivation yields

a = a(RI " (--_ a + a°-_y, (52)

where a is the exact scattering length, a 0 is the scattering length of the zeroth order prob-

lem, and a(R) is the scattering length associated with the part of the wave function within

radial distances of R of the nucleus. Equation 52 is another result of long-range induced

polarization indicative of the basic difference between a bound-state and a scattering

problem. For a value of R = 25, a bound-state wave function has essentially assumed

its asymptotic form, whereas the portion of the wave function beyond R = 25 contributes

(negatively)almost I0 percent to the tripletscattering length.9 Equation 52 is valid for

any method in which only the part of the configuration space for rI' r2 < R is included.

The contributions from large r die off rapidly as k is increased, to the extent that

they are negligible for our accuracy by k = 0.I. Tables 3 and 4 summarize the singlet

and tripletcalculated results. The _0's are a somewhat visual mean of the values in

Tables I and 2. The convergence of the higher terms is evident. The final _'s contain in

parentheses the estimated uncertainty of the last figure(s). The convergence is such

that all higher multipole contributions should be smaller than this uncertainty. The error

is again an estimate of those due to 5o and the higher multipoles. (The quantities in

parentheses in the other columns are not deviations from the electron-hydrogen phase

shifts,but rather from the exact phase shifts of well defined but different mathematical

problems.) The greatest absolute error of the higher multipoles is contained in A_o

(although itcontains the smallest proportional error). In the tripletcase, the errors

have been estimated at from about 5 percent to 25 percent, for increasing k. In the

9This analysis is contained in Reference 17 together with the result of our triplet scattering length calculation. At that

time the significant reduction from the RSO bound (Reference 1) was completely unexpected.
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Resum6 of Calculation for Triplet
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_o A_o A2_o( 1 ) z_2So(2 ) _ _(polarized orbital)

0t 2.338 (3)

0.01 3.11821(2)

0.05 3.025 (1)

0.1 2.909 (1)

0.2 2.6810 (5)

0.3 2.4630 (5)

0.4 2.259 (1)

0.5 2.072 (1)

0.75 1.683 (2)

0.8 1.617 (2)

0.00504

0.0193

0.0303

0.0379

0.0392

0.0379

0.0363

O.O328

0.0282

0.000295

0.0013

0.0021

0.0021

0.0017

0.0013

0.0011

0.0007

0.0005

0.000153

0.0008

0.0014

0.0023

0.0026

0.0028

0.0027

0.0024

0.0018

1.76 (3)

3.1237(4)

3.046 (5)

2.942 (10)

2.723 (10)

2.516 (10)

2.301 (10)

2.112 (10)

I. 719 (10)

1.647 (10)

1.7, (1)

3.125'

3.049*

2.946*

2.732

2.519

2.320

2.133

1.745

tThe k _ 0 entries are scattering lengths.

*These polarized orbital results are slightly different from those given in Temkin-Lamkin (Reference 20) because of

the fact that integration there was stopped at r = 20.

Table 4

Resumb of Calculation for Singlet

I) 2)
_o ASo 52_o ( 52_o ( s S (polarized orbital)

ot 7.8 (1)

0.01 3.0640(5)

0.05 2.759 (1)

0.1 2.420 (3)

0.2 1.895 (2)

0.3 1.535 (10)

0.4 1.269 (1)

0.5 1.066 (2)

O. 75 0.756 (2)

0.8 0.728 (2)

0.026

0.117

0.187

0.215

0.189

0.165

0.148

0.131

0.126,

-0.008

-0.035

-0.045

-0.030

-0.016

-0.009

-0.007

-0.0025

-0.002

0.004

0.019

0.030

0.034

0.030

0.026

0.023

0.021

0.020*

5.6 (4)

3.086 (4)

2.86 (2)

2.59 (3)

2.11 (5)

1.74 (6)

1.45 (6)

1.23 (6)

0.91 (6)

0.87, (6)

5.7

3.085(1)

2.86

2.58

2.11

1.75

1.47

1.25

0.91

_The k = 0 entries are scattering lengths.

SThese entries are different from those quoted in a preprint of this material.
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singlet case, the estimated error ranged from 10 percent to 40 percent. We feel that

the errors allowed for are rather liberal, particularly in the triplet case. For that

reason, we have retained more figures than would seem to be justified by the error.

polarized orbital phase shifts (Reference 18) are included as the last column.

DISCUSSION

The

The implications of the nonadiabatic theory for the various well-known techniques

of calculating (s-wave) scattering problems are clear. The exchange approximation, as

representative of the zeroth order problem, has a central role and is by no means a bad

approximation. The method of polarized orbitals (Reference 18) and to lesser extent the

various exchange adiabatic approximations (Reference 19 and 20) are legitimate next

order corrections. The application of these conclusions for electron scattering from

other atoms is perhaps even more significant, for in those cases it is difficult to do

better than the exchange approximation. But since the polarization is expected to act

even more classically, the inclusion of an exchange-adiabatic polarization potential

would seem eminently worthwhile where the atomic polarizability is non-negligible. The

quantitative alteration, in fact, can be much more pronounced than in hydrogen. In oxygen,

for example, the polarization potential decreases the cross section of the zero-energy

exchange approximation cross section by a factor of 8, and by a factor of 2 at energies of

10 ev (References 19 and 21). Both decreases seem now to be confirmed by experiment

(Reference 22 and 23).

There are, however, at least two related problems which it would also be well to put

on a rigorous basis, at least in the case of hydrogen. One is the scattering of higher than

s-partial waves, and the second is the inelastic scattering.

Concerning the first problem, we feel that physical intuition should be a reasonable

guide as to what techniques are best. Thus, for a given incident energy we would expect

the phase shifts to get increasingly further from the exchange approximation phase shifts.

This is expected to be so because the higher partial waves are concentrated further from

the center, where the adiabatic potential becomes increasingly important relative to other

effects. Or, to put it another way, for a given incident velocity, the further away a particle

orbit, the more adiabatic its motion appears (an observation that is easily verified on

passing airplanes).'° Nevertheless, the solution of this problem by an extension of our

nonadiabatic theory is not trivial. This is because the SchrSdinger equation reduces to

sets of coupled three-dimensional partial differential equations (Reference 9). In addition,

at the lowest energies the polarization must be included in the zeroth order approximation

in accord with the fact that the effective range formula gets altered in its first term

(References 20, 25, and 26).

10The picture may not be as rosy as might be thought. Recent experiments by Neynaber, Marino, Rothe, and Trujillo

(Reference 24) on the (e-H) total elastic cross section, if they are correct, would indicate that the triplet p-wave phase

shifts are much closer to the exchange approXimation results. This heightens the necessity for a rigorous quantitative

theory for the higher partial waves.
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I

The second problem is also difficult to handle by our present method. Consider

for example the s-wave part of the (ls-2s) excitation problem. This is a zero orbital

angular momentum equation governed again by Equation 1. The difficulty here is that the

boundary condition (Equation 8) must contain all states that are energetically accessible.

Even the solution of the zeroth equation (Equation 11) is enormously complicated for the

same reason. We are restricted to the statement that present s-wave close-coupling

approximations which include only s-excited states of hydrogen (References 13 and 27) are

again approximations of only the zeroth order problem (Equation 11). Here, however,

it appears that the zeroth order problem is a much more uncertain approximation of the

whole problem.

REFERENCES

1. Rosenberg, L., Spruch, L., and O'Malley, T. F., "Upper Bounds on Electron-Atomic

Hydrogen Scattering Lengths," Physical Rev. 119(1):164-170, July 1, 1960

2. Rosenberg, L., and Spruch, L., "Bounds on Scattering Phase Shifts for Compound

Systems," Physical Rev. 121(6):1720-1726, March 15, 1961

3. Borowitz, S., and Greenberg, H., "Variational Calculation of the Scattering of Elec-

trons of Nearly Zero Energy by Hydrogen Atoms," Physical Rev. 108(3):716-720,

November 1, 1957

4. Ohmura, T., Hara, Y., and Yamanouchi, T., "Low Energy Electron-Hydrogen Scat-

tering," Progress of Theoretical Phys. 20(1):82-88, July 1958

5. Ohmura, T., and Ohmura, H., "Electron-Hydrogen Scattering at Low Energies,"

Physical Rev. 118(1):154-157, April 1, 1960

6. Mittleman, M. H., and Watson, K. M., "Scattering of Charged Particles by Neutral

Atoms," Physical Rev. 113(1):198-211, January 1, 1959

7. Mittleman, M. H., "The Scattering of Electrons by Atomic Hydrogen," Annals of

Physics,14:94-106, July 1961

8. Luke, P. J., Meyerott, R. E., and Clendenin, W. W., "Wave Function of Ionized

Lithium," Physical Rev. 85(3):401-409, February 1, 1952

9. Morse, P. M., and Feshbach, H., "Methods of Theoretical Physics," New York:

McGraw-Hill, 1953, p. 1725

10. Morse, P. M., and Allis, W. P., "The Effect of Exchange on the Scattering of Slow

Electrons from Atoms," Physical Rev. 44(4):269-276, August 15, 1933

11. Geltman, S., "Variational Treatment of Electron-Hydrogen Atom Elastic Scattering,"

Physical Rev. 119(4):1283-1290, August 15, 1960

12. McEachran, R. P., and Fraser, P. A., "d-Wave Contribution to Electron-Hydrogen

Atom Scattering," Canadian J. of Physics 38(2):317-320, February 1960



26

13. Smith, K., "Elastic and Inelastic Scattering of Electrons from the S States of Atomic

Hydrogen," Physical Rev. 120(3):845-847, November 1, 1960

14. Temkin, A., "A Note on the Scattering of Electrons from Atomic Hydrogen," Physical

Rev. 116(2):358-363, October 15, 1959

15. Dalgarno, A., and Stewart, A. L., "On the Perturbation Theory of Small Disturbances,"

Proc. of the Royal Society of London 238 A(1213):269-275, December 18, 1956 and

"A Perturbation Calculation of Properties of the 1,_ and 2 s_ states of Hell 2+,,,

Proc. of the Royal Society of London 238 A(1213):276-285, December 18, 1956

16. Temkin, A., "Absolute Definition of Phase Shift in the Elastic Scattering of a Particle

from Component Systems," J. of Mathematical Physics 2(3):336-340, May-June 1961

17. Temkin, A., "Polarization and the Triplet Electron-Hydrogen Scattering Length,"

Physical Rev. Letters 6(7):354-355, April 1, 1961

18. Temkin, A., and Lamkin, J. C., "Application of the Method of Polarized Orbitals to

the Scattering of Electrons from Hydrogen," Physical Rev. 121(3):788-794,

February 1, 1961

19. Bates, D. R., and Massey, H. S. W., "The Basic Reactions in the Upper Atmosphere

II. The Theory of Recombination in the Ionized Layers," Proc. of the R_al Society

of London 192 A(1028):1-16, December 23, 1947

20. Bransden, B. H., Dalgarno, A., et at., "The Elastic Scattering of Slow Electrons by

Hydrogen Atoms," Proc. of the Physical Society 71(462) part 6:877-892, June 1, 1958

21. Temkin, A., "Polarization and Exchange Effects in the Scattering of Electrons from

Atoms with Application to Oxygen," Physical Rev. 107(4):1004-1012, August 15, 1957

22. Lin, S. C., and Kivel, B., "Slow-Electron Scattering by Atomic Oxygen," Physical

Rev. 114(4):1026-1027, May 15, 1959

23. Neynaber, R. H., Marino, L. L, et al., "Low-Energy Electron Scattering from

Atomic Oxygen," Phys. Rev. 123(1):148-152, July 1, 1961

24. Neynaber, R. H., Marino, L. L., et al., "Scattering of Low-Energy Electrons by

Atomic Hydrogen," Phys. Rev. 124(1):135-136, October 1, 1961

25. Thaler, R. M., "Polarizability of the Neutron," Physical Rev. 114(3):827-829,

May i, 1959

26. Spruch, L., O'Malley, T. F., and Rosenberg, L., "Modification of Effective-Range

Theory in the Presence of a Long-Range Potential," Physical Rev. Letters

5(8):375-377, October 15, 1960

27. Marriott, R., "Calculation of the ls-2s Electron Excitation Cross Section of Hydro-

gen," Proc. of the Physical Society 72(463) part 1:121-129, July 1, 1958



AppendixA

Formulas for Integrals Involving Continuum Coulomb Wave Functions

General Discussion

Formulas for integrals involving continuum Coulomb wave functions are given here.

The authors would like to acknowledge the guidance of Dr. L. Maximon in performing these

integrations. All formulas are obtainable from the very general formulas of Alder et al.*

The results involve, among others, the various kinds of hypergeometric and Bessel func-

tions. The notation for these are standard aside from minor variations. Definitions may

be found in innumerable books; we mention only Morse and Feshbach. t Many of the for-

mulas are not manifestly real, nevertheless, they may all be shown to be real. Those

matrix elements which should be symmetric with respect to the interchange of initial and

final states can be shown to be symmetric. The reality and symmetry are, in fact, closely

related.

The continuum Coulomb functions are normalized as follows:

up(r) : re -ipr F(1 + ip-t; 2; 2ipr)

Uo(r) = lirn up(r) = 1
p-'O

where F(a;b;x) is the confluent hypergeometric function; J,(x) is the Bess el function of

order n, In practice all integrals involving the zero energy Coulomb wave function

%(r), denoted by the index I o, can be derived from the formulas involving a general p,

denoted by Ip, by suitable limiting processes. For the purpose of giving the discrete-

continuum matrix elements it is convenient to write the discrete wave functions in the

form

R(r) = e-r/n_-n-_, CnjrJ '

j=l

*Alder, K., Bohr, A., et al., "Study of Nuclear Structure by Electromagnetic Excitation with Accelerated Ions,"

Rev. Mod. Phys. 28(4):432-542, October 1956. (See in particular formula II.B.53.)

tMorse, P. M., and Feshbach, H., "Methods of Theoretical Physics," New York: McGraw-Hill, I953, p. 1725

27
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where C
.j

is the coefficient of r J in

R°.:r:: :.l-"'(_r.-')o-(""'F(-.+:_2; 2r.-').

77" 77"

All tan -1 functions are to be taken between -_- and +_.

Triplet Formulas

= Factor I x Factor II , (A1)
(ME)IPl. IP2

where

Factor I ;

Factor II = F (-ip_ l ,.-,,.)-,.[..,(.,-_;)].(,_+-,,,.+,-,,,;.)
' ' ' h2 + (Pl - P2

and

F( a, b; c;x ) are hypergeometric functions,

= Kp1 ÷ gp2 r

4PlP2

_,,+ (:,, +,2)_

y _ 1 -- X °



where

(ME)Io, zp = Factor III x Factor IV ,

29

(A2)

Factor IIl =
2k I_k - 2,k 2(_2 + p27exp 2 + p2 p

k2 + p2j

Factor IV = F(ip'l; 1' _ 2(_ + ip)
' _ +p2] k2 + p2

F + ipml; 2; _.2 ÷ p2/

_. -- X + K
0 p

@ @ • •

where

(ME)IO,I o = 2k-3e-4/A[Io(4)_-I ) _ II(4k-l)] , (A3)

= 2% and l{x) are the Bessel function of imaginary argument.

where

np
= _ +K +n-I

n p t

(ME)
n,Ip (A4)

_j(k) = e-kr_ ' ,)drJUp(

Hence,

_0(k ) = (_fl+ p2)-lexp [-2p -I tan'1(p/K)]



3O

and

_ .+p = 2S(Xp) sine

_c, Ip : 2S(ap) COS S

= I +_
p p

(ME) : lira (ME)
n,IO

p_O
n, Ip p

(A5)

= tan -1 +-_ In + p(p + k

_s,I0 : lim _,,Ip

p-.0

_Ic, IO = lira _Ic, IO '
p-+O

where the only non-trivial limit is

80 = tan-I (k-:_-t - kko-1
\^o/

Singlet Formulas

The symbols have the same meaning as the corresponding triplet formulas.

where

Term V

(SME)IpI,Ip 2 = Term V + Term VI,

= I_KpIKp2 + p22 + Kp_ + _-I Kpl(k2 + p12- p22)I (ME)Ip I , IP2

(A6)

Term VI = 2exp
L PIP2 tan-1 k /

plp2 tan I .Pl P2

i(p2 - ,,) Yl F(, - i,;',, + i,,-'; 2; x)+ In ....
2PlP2 k2 + (Pl + _2) _

Q @ • •



where

{SME) Ip, io : Term VIII + Term VIII,
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(A7)

Term VII

Term VIII

[2KpKO + K02 + _-1 Kp(>`2 + p2)] (ME)Ip,I 0

)2 + p2eXp _2 + p2 +ptan-1 + >`2 ÷ p2

• @ I •

F/1 + ip-1; 2;

(SME)Io,10 - 2>` Io - 3If (A8)

(SME) = Term IX + Term X
n,Ip

(A9)

where

Term IX = (K-n -l) _, Cnj I(.Kn + >',p)_j (>`np)- J_j-I (Xnp) 1

j=l

Term X =

j ffiI

(_)n,IO : lim (SM£)n,ip .
p-*O

(AIO)

and

/_Ip = NsrIp - NsIp + kNcrIp

rip : Ncrip - Nci p - kNsrlp

where
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_sXp

_crlp

_clp

• • @ •

Fzo = lim _Ip

rio = lim ulp
p-.O

_A-La_,l_y, I_2 G-185
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